The Application of Improved Fuzzy Vault Key Binding Algorithm in Fingerprint Feature Encryption System

Author(s): 
F. Wang*, B. Han, L. Niu, & Z. Y. Liu

Affiliation(s): 
School of Computer and Information Engineering College, Fu Yang Teachers College, Fu Yang, 236037, Anhui, China

Cite this paper
F. Wang*, B. Han, L. Niu, & Z. Y. Liu, “The Application of Improved Fuzzy Vault Key Binding Algorithm in Fingerprint Feature Encryption System”, Journal of Mechanical Engineering Research and Developments, vol. 39, no. 2, pp. 441-449, 2016. DOI: 10.7508/jmerd.2016.02.021

ABSTRACT: For traditional encryption algorithm existing key security management problem, an improved fingerprint minutiae key binding method is proposed based on Fuzzy Vault. The algorithm has the following improvements: Firstly, we effectively fuse the Lagrange polynomial interpolation formula and personal information. Secondly, we make use of helper data direction angle information to align center point, so that the algorithm has the translation rotation invariant property. Experimental result shows that: the algorithm not only can well protect the security key, but also there is a very low error rate.

Keywords : Fuzzy Vault; Key binding; Fingerprint minutiae; Helper data.

References

[1] A.K.Jain, P.J.F1ynn, andA.A.Ross. Handbookofbiometrics.Springer, 2007.
[2] G.J. Tomko, C.Soutar, and G.J.Schmidt. Fingerprint controlled public key cryptographic system, July 30 1996. US Patent 5, 541, 994.
[3] Y Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In Advances in cryptology Euro-crypt 2004, pages 523-540. Springer, 2004.
[4] A.Juels and M. Sudan. A fuzzy vault scheme. In Proceedings of 2002 IEEE International Symposium on  Information Theory., page 408. Lausanne Switzerland, 2002.
[5] A. Juels and M. Wattenberg. A fuzzy commitment scheme. In Proceedings of the 6th ACM conference on Computer and communications security, pages 28-36.ACM New York, N丫USA, 1999.
[6] B. Kanukurthi and L.Reyzin. An Improved Robust Fuzzy Extractor. In Proceedings of the 6th international conference on Security and Cryptography for Networks, pages 156-171. Springer Verlag Berfin, Heidelberg, 2008.
[7] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: A brief survey of results from 2004 to 2006. http://www.cs.bu.edu/reyzin/papers/fuzzy survey.pdf, 2007.
[8] A. Duels and M. Sudan. A Fuzzy Vault Scheme. Proceedings of IEEE International Symposium  on  Information  Theory,Lausanne,Switzerland,2002. Designs,Codes and Cryptography,2006, 38(2):pp. 237-257.
[9] K. Nandakumar, A. K. Jain, and S. Pankanti. Fingerprint-Based Fuzzy Uault: Implementation  and  Performance. IEEE Transactions on Information Forensics and Security, 2007, Dec., 2(4), pp: 744-757.
[10] E. Liu, J. Liang, L. Pang, M. Xie, and J. Tian. Minutiae and modified Bio-code fusion for fingerprint-based key generation. Journal of Network and Computer.
[11] X. J Chen, J. Tian, and X. Yang. A New Algorithm for Distorted Fingerprints Matching Based on Normalized Fuzzy Similarity Measure. IEEE Transactions on Image Processing, 2006, Mar. 15(3), pp: 767-776.
[12] U.Uludag, S.Pankanti and A.K.Jain, Fuzzy Vault for Fingerprints. in Proceedings of Audio and Video-based Biometric Person Authentication, Rye Town, USA, July 2005, pp. 310-319.
[13] A. K. Jain, L. Hong, and R. Bolle, Online Fingerprint Verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 4, pp. 302-314,Apri1 1997.