High-Efficient Sequential Approximate Strategy for Reliability-Based Robust Design Optimization

 X. M. Lai, Q. F. Lai, H. Huang, C. Wang, Y. Zhang, L. Yan, J. H. Yang, & S. R. Liao

†College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, 361021, China, ‡Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha,
410083, China, §College of Computer Science and Technology, Huaqiao University, Xiamen, 361021, China, ††State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China

Cite this paper
X. M. Lai, Q. F. Lai, H. Huang, C. Wang, Y. Zhang, L. Yan, J. H. Yang, & S. R. Liao, “High-Efficient Sequential Approximate Strategy for Reliability-Based Robust Design Optimization”, Journal of Mechanical Engineering Research and Developments, vol. 39, no. 2, pp. 278-295, 2016. DOI: 10.7508/jmerd.2016.02.003

ABSTRACT: To solve reliability-based robust design optimization (RBRDO) problem in engineering practice, it requires repeated performance of actual complex computation-intensive model simulation within the nesting optimization. In order to improve the computation efficiency, this paper presents an improved formulation of the RBRDO, based on which the RBRDO problem is transformed into  approximate sequential sub-optimization problems (ASSOP).In the outer optimization, a fast method to calculate the performance-measure-approach (PMA) functions in ASSOP is introduced, which only needs adaptive limited computation number of the actual simulation models. In the inner optimization, the PMAs in each sub-optimization problem are further expressed as the explicit functions of design vectors, which make each sub-optimization problem deterministic and accelerate the computation speed without performing the actual complex computation-intensive model simulation. Numerical examples shows that the above method is quite efficient since it can effectively reduce the computation number of the actual simulation model and the method itself is applicable to integrate into the existing commercial software such as finite element software. Hence, the method presented in this paper is of high application value to solve complex RBRDO problems in engineering practice

Keywords : Reliability-Based robust design optimization; Performance measure approach; Trust region; Kriging model.

[1] Z. Liu, S. Atamturktur, C.H. Juang, Performance based robust design optimization of steel moment resisting frames, J. Constr. Steel. Res. 89 (2013) 165–174.
[2] X.Du , A. Sudjianto, W. Chen, An integrated framework for optimization under uncertainty using inverse reliability strategy,ASME, J. Mech. Design. 126(2004) 562–570.
[3] I.Doltsinis, Z.Kang,Robust design of structures using optimization methods, Comput. Method. Appl. M. 193(2004)2221–2237.
[4] I.Doltsinis, Z.Kang, G.Cheng, Robust design of non-linear structures using optimization methods, Comput. Method. Appl. M. 194(2005)1779–1795.
[5] B.D.Youn, K.K.Choi, K.Yi, Performance moment integration (PMI) method for quality assessment in reliability-based robust optimization, Mech. Based. Des. Struc. 33(2005) 185–213.
[6] Z.P. Mourelatos, J.Liang, A methodology for trading-off performance and robustness under uncertainty, J. Mech. Design. 128(2005) 856-863.
[7] I.Lee, K.K. Choi, L. Du, D.Gorsich, Dimension reduction method for reliability-based robust design optimization, Comput. Struct, 86(2008) 1550–1562.
[8] O.P.Yadav, S.S. Bhamare, A.Rathore, Reliability-based robust design optimization: A multi-objective framework using hybrid quality loss function, Qual. Reliab. Eng. Int. 26(2010) 27-41.
[9] V.Rathod, O.P.Yadav, A.Rathore, R. Jain, Optimizing reliability-based robust design model using multi-objective genetic algorithm, Comput. Ind. Eng. 66(2013) 301–310.
[10] A.F.Shahraki, R. Noorossana, Reliability-based robust design optimization: A general methodology using genetic algorithm, Comput. Ind. Eng. 74(2014)199–207.
[11] C.Jiang, X.Han, G.P. Liu, A sequential nonlinear interval number programming method for uncertain structures, Comput. Method. Appl. M. 197(2008) 4250–4265.
[12] L.Harzheim, U. Warnecke,Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer, Struct. Multidiscip. O. 42(2010) 315–323.
[13] X.Gu, J.Lu, Reliability-based robust assessment for multiobjective optimization design of improving occupant restraint system performance, Comput. Ind. 65(2014) 1169–1180.
[14] G.Sun, G. Li, S. Zhou, H. Li, S. Hou, Q. Li, Crashworthiness design of vehicle by using multiobjective robust optimization, Struct. Multidiscip. O. 44(2011) 99-110.
[15] H.Yu, F. Gillot, M. Ichchou, Reliability based robust design optimization for tuned mass damper in passive vibration control of deterministic/uncertain structures, J. Sound. Vib. 332(2013) 2222–2238.
[16] M.Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Stat. 23(1952) 470–472.
[17] T.M.Cho, B.C. Lee, Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method, Struct. Saf. 33(2011) 42–50.
[18] G.G.Dimopoulos, Mixed-variable engineering optimization based on evolutionary and social metaphors, Comput. Method. Appl. M. 196(2007) 803–817.
[19] C.Praveen, R.Duvigneau, Low cost PSO using metamodels and inexact pre-evaluation: Application to aerodynamic shape design, Comput. Method. Appl. M. 198(2009) 1087–1096.
[20] P.Wu, L.Gao, D. Zou, S. Li, An improved particle swarm optimization algorithm for reliability problems. 50(2011) 71–81.
[21] A.R.Conn, N.I. Gould, P.L. Toint, Global convergence of a Class of trust region algorithms for optimization with simple bounds  SIAM. Journal on Numerical Analysis. 25(1988) 433–460.
[22] J.F.Rodriguez, J.E. Renaud, L.T. Watson, Convergence of trust region augmented Lagrangian methods using variable fidelity approximation data, Struct Optimization. 15(1998) 141–156.
[23] R.howdhury, B. Rao, Hybrid High Dimensional Model Representation for reliability analysis, Comput. Method. Appl. M. 198(2009) 753-765.
[24] S.N.ophaven, H.B. Nielsen, J.øndergaard, 2005, DACE, a Matlab kriging toolbox, http://www.imm.dtu.dk/-hbn/dace/.
[25] G.G.Wang, Adaptive response surface method using inherited latin hypercube design points, J. Mech. Des., Trans. ASME. 125(2003) 210–220.